Supporting Information for RSI20-AR-02824

X.D. Zhu*, R. Ullah, and V. Taufour

1. Derivation of Equation (6), (7) and (8) in the main text from the work of Reference 21

The reflection matrix for a forward-propagating beam incident on a sample is given by ${ }^{21}$

$$
M_{R}^{(f)}=\left[\begin{array}{cc}
r_{p p} & r_{p s} \tag{S-1}\\
r_{s p} & r_{s s}
\end{array}\right]=\left[\begin{array}{cc}
r_{p}+r_{p p, T} & r_{p s, L}+r_{p s, P} \\
r_{s p, L}+r_{s p, P} & r_{s}
\end{array}\right]=\left[\begin{array}{cc}
r_{p}+\alpha_{x} m_{x} & \alpha_{y} m_{y}+\alpha_{z} m_{z} \\
-\alpha_{y} m_{y}+\alpha_{z} m_{z} & r_{s}
\end{array}\right]
$$

At an incidence angle $\theta_{\text {inc }}=20^{\circ}$, reflectivities for s-polarization and p-polarization have nearly the same amplitude and are 180° out of phase, i.e., $r_{s}=-r_{p}$.

Longitudinal Kerr angle $\boldsymbol{\theta}_{K, L}$ By using a half-wave plate for the first wave plate with its fast axis (FA) at 22.5° from the p-polarization (so that $a=b=1 / \sqrt{2}$ and $\varphi=0$) and using a quarterwave plate for the second wave plate with its FA parallel to the p-polarization after the sample, Equation (18) in Reference 21 yields the following

$$
\begin{align*}
& \alpha_{K}=\operatorname{Im}\left\{\frac{4\left(r_{p s, L}\left(r_{p}-r_{s}\right)+r_{p s, P}\left(r_{p}+r_{s}\right)\right) e^{i \varphi}}{\left(r_{p}^{2}+r_{s}^{2} e^{i 2 \varphi}\right)}\right\} \cong \operatorname{Im}\left\{\frac{4 r_{p, L}}{r_{p}}\right\}=\operatorname{Im}\left\{\frac{4 \alpha_{y} m_{y}}{r_{p}}\right\}=2 \theta_{K, L} \tag{S-2}\\
& \theta_{K, L} \cong \operatorname{Im}\left\{\frac{2 r_{p s, L}}{r_{p}}\right\}=\operatorname{Im}\left\{\frac{2 \alpha_{y} m_{y}}{r_{p}}\right\} \tag{S-3}
\end{align*}
$$

$r_{p s, L}$ is given in Table II by Hunt in Reference 9. At $\theta_{\text {inc }}=20^{\circ}$, we find

$$
\begin{equation*}
\frac{r_{p s, L}}{r_{p}} \cong \frac{i Q \sin \theta_{i n c}}{\varepsilon_{s}-1} \tag{S-4}
\end{equation*}
$$

(S-3) and (S-4) yield Equation (6) in the main text: $\theta_{K, L} \cong \operatorname{Re}\left\{\frac{2 \sin \theta_{\text {inc }} Q}{\varepsilon_{s}-1}\right\} m_{y}$.

Transverse Kerr angle $\boldsymbol{\theta}_{\boldsymbol{K}, \boldsymbol{T}} \quad$ By removing the first wave plate (so that $a=1, b=0$ and $\varphi=0$) and using a quarter-wave plate for the second wave plate with its FA set to be $+45^{\circ}$ rotated from the p-polarization after reflection from the sample, Equation (21) in Reference 21 yields

$$
\begin{align*}
& \alpha_{K}=\operatorname{Im}\left\{\frac{2 r_{p p, T}}{r_{p}}\right\}=\operatorname{Im}\left\{\frac{2 \alpha_{x} m_{x}}{r_{p}}\right\} \equiv 2 \theta_{K, T} \tag{S-5}\\
& \theta_{K, T}=\operatorname{Im}\left\{\frac{r_{p p, T}}{r_{p}}\right\}=\operatorname{Im}\left\{\frac{\alpha_{x} m_{x}}{r_{p}}\right\} \tag{S-6}
\end{align*}
$$

$r_{p p, T}$ is given in Table I by Hunt in Reference 9. At $\theta_{i n c}=20^{\circ}$, we find

$$
\begin{equation*}
\frac{r_{p p, T}}{r_{p}} \cong \frac{i 2 Q \sin \theta_{i n c}}{\varepsilon_{s}-1} \tag{S-7}
\end{equation*}
$$

(S-6) and (S-7) yield Equation (7) in the main text: $\theta_{K, T} \cong \operatorname{Re}\left\{\frac{2 \sin \theta_{\text {inc }} Q}{\varepsilon_{s}-1}\right\} m_{x}$.

Polar Kerr angle $\boldsymbol{\theta}_{\boldsymbol{K}, \boldsymbol{P}}$ By choosing a quarter-wave plate for the first wave plate with its FA set to $+45^{\circ}$ from the p-polarization (so that $a=b=1 / \sqrt{2}$ and $\varphi=90^{\circ}$) and removing the second wave plate entirely, Equation (15) in Reference 21 yields

$$
\begin{align*}
& \alpha_{K}=\operatorname{Im}\left\{\frac{4\left(r_{p s, L}\left(r_{p}+r_{s}\right)+r_{p s, p}\left(r_{p}-r_{s}\right)\right) e^{i \varphi}}{\left(r_{p}^{2}-r_{s}^{2} e^{i 2 \varphi}\right)}\right\} \cong \operatorname{Im}\left\{\frac{4 i r_{p, p}}{r_{p}}\right\}=\operatorname{Im}\left\{\frac{4 i \alpha_{z^{2}} m_{z}}{r_{p}}\right\} \equiv 2 \theta_{K, P} \tag{S-8}\\
& \theta_{K, P} \cong \operatorname{Im}\left\{\frac{2 i r_{p s, P}}{r_{p}}\right\}=\operatorname{Im}\left\{\frac{2 i \alpha_{z} m_{z}}{r_{p}}\right\} \tag{S-9}
\end{align*}
$$

$r_{p s, P}$ is given in Table II by Hunt in Reference 9. At $\theta_{\text {inc }}=20^{\circ}$, we find

$$
\begin{equation*}
\frac{r_{p s, P}}{r_{p}} \cong-\frac{i Q \sqrt{\varepsilon_{s}}}{\varepsilon_{s}-1} \tag{S-10}
\end{equation*}
$$

(S-9) and (S-10) yield Equation (8) in the main text: $\theta_{K, P} \cong \operatorname{Im}\left\{\frac{2 \sqrt{\varepsilon_{s}} Q}{\varepsilon_{s}-1}\right\} m_{z}$.
2. Scan head for the oblique-incidence Sagnac interferometric scanning microscope:

